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Abstract

In this paper, a generalized expression for latent heat has been derived by considering temperature gradients within the

sample, and the usual situation in which the speci®c heat of the sample changes during the transition and speci®c heats in both

low- and high-temperature states are functions of the temperature. For a reversible transition, when the speci®c heat of a

sample is a slowly changing function of the temperature, the errors caused by the temperature gradient within the sample can

theoretically be minimized by averaging the latent heats obtained from both the heating and cooling process. It is also pointed

out that the latent heat is proportional to the area enclosed by peak curve and the imaginary equivalent non-latent heat

baseline. # 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Differential thermal analysis (DTA) is a powerful

tool [1±4] which has a wide range of applications, such

as the determination of purity, crystallinity, solid

reactions, thermal decomposition, phase transitions

and the determination of phase diagrams.

Although DTA is very useful, there are shortcom-

ings in the basic Gray±Speil theory [5,6] which cannot

satisfactorily explain the physical meaning of each

eigen point of the DTA curve. The Gray±Speil theory

is very simple in that it assumes that the speci®c heat

of a sample is uniform during the phase transition,

with no regard to the fact that the speci®c heat is a

function of temperature. We have generalized the

Gray±Speil theory and have derived a general latent

heat formula [7] which can be used to cope with phase

changes for which the speci®c heat is a temperature-

dependent quantity. The present paper considers tem-

perature gradients within the sample and improves the

earlier work [7] to give a stricter and more general

result.

2. Derivation of latent heat formula

Assume that a phase change occurs during a test and

the heat conductivity of the holder is so high that the
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temperature gradient within the holder can be

neglected. The speci®c heats of a sample are cL

and cH, respectively, in the low- and high-temperature

states, and they are functions of temperature. In Fig. 1,

there is a typical DTA transition curve. Fig. 2 shows

the relationship between energy and temperature of a

sample particle with a unit mass.

Firstly, we consider a heating phase change process.

As shown in Fig. 1, at point A the phase change

occurs. When the sample holder temperature reaches

TA (TA�Ttr, Ttr is the transition temperature of the

sample), only the small section of the sample

that contacts the holder wall reaches the transition

temperature Ttr. The temperature of other parts of

the sample is still lower than the temperature TA

because of the temperature gradient. For speci®c

experimental conditions, assuming the temperature

of a sample particle i to be TLi and the temperature

difference between the holder wall and the particle

to be �TLi, we have the relation TLi�Ttrÿ�TLi.

In this de®nition, �TLi is always bigger than

zero.

At point D, the whole sample has ®nished the phase

change. The outer surface of the sample reaches

temperature TD, and the distribution of the tempera-

ture gradients within the sample has just stabilized,

causing the curve to return to the point D, the position

of the baseline of the DTA curve. Assume the tem-

perature of a sample particle i to be THi, the tempera-

ture difference between the holder and the sample to

be �THi, and there is a relation THi�TDÿ�THi. Again,

�THi is always positive.

Fig. 2 is a typical diagram showing the relation-

ship between the sample energy and temperature.

Using ELi and EHi, respectively, to represent the

energy of a sample particle i with a unit mass corres-

ponding to the point A and point D in the DTA curve,

we have:

ELi � E1�TLi�; (1)

EHi � E1�TA� � L� E2�THi�; (2)

where L is the latent heat of the sample per unit mass,

E1 the energy of the sample with a unit mass in a low-

temperature state, and E2 the energy increment (the

energy zero point is set at the phase-transition point) of

the sample with a unit mass.

From TLi�TAÿ�TLi, THi�TDÿ�THi, we have:

EHi ÿ ELi � �Ei � E1�TA� � L� E2�THi�
ÿ E1�TLi� (3)

L � �Ei ÿ E1�TA� ÿ E2�THi� � E1�TLi�
� �Ei ÿ E1�TA� ÿ E2�TD ÿ�THi�
� E1�TA ÿ�TLi� � �Ei ÿ E2�TD�
� �E02�TD��THi ÿ E01�TA��TLi�
ÿ 1

2!
�E002�TD���THi�2 ÿ E001�TA���TLi�2�

� � � � � �ÿ1�nÿ1

n!
�E�n�2 �TD���THi�n

ÿ E
�n�
1 �TA���TLi�n� � � � � (4)

Assume the whole latent heat in the heating phase

Fig. 1. A typical DTA heating (endothermic) phase change curve

�T�TrÿTs, is the reference temperature, and Ts the sample

temperature.

Fig. 2. The diagram between energy and temperature of a sample.
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change process is Lheating, we have:

Lheating �
X

i

miL �
X

i

mi�Ei ÿ
X

i

miE2�TD�

�
X

i

mi�E02�TD��THi ÿ E01�TA��TLi�

ÿ 1

2!

X
i

mi�E002�TD���THi�2

ÿ E001�TA���TLi�2� � � � �

� �ÿ1�nÿ1

n!

X
i

mi�E�n�2 �TD���THi�n

ÿ E
�n�
1 �TA���TLi�n� � � � � (5)

That is:

Lheating �
X

i

mi�Ei ÿME2�TD� � � (6)

where

� �
X

i

mi�cH�TD��THi ÿ cL�TA��TLi�

ÿ 1

2!

X
i

mi

dcH�TD�
dT

��THi�2
�

ÿ dcL�TA�
dT

��TLi�2
�
� � � � �ÿ1�nÿ1

n!

�
X

i

mi
dnÿ1cH�TD�

dTnÿ1
��THi�n

�
ÿ dnÿ1cL�TA�

dTnÿ1
��TLi�n� � � � � (7)

where
P

i signi®es that the sum is taken over all

sample particles and the following de®nition are valid:

E01�TA� � cL�TA�, E02�TD� � cH�TD�, E001�TA� �
�dcL�TA��=dT , E002�TD� � �dcH�TD��=dT ; . . ..

In the Eq. (6), the term
P

i mi�Ei is the heat energy

absorbed in the process interval from A to D, and this

energy includes both the latent heat and the heat used

to increase the temperature of sample after the phase

transition from TA to TD. This total energy is propor-

tional to the area enclosed by peak curve and the base

line �T�0 from temperature TA to TD, which is the

area A0ABCDD0 as shown in Fig. 1 and can be

represented by AREApeak_h. The term ME2(TD) is

the energy absorbed to increase the sample tempera-

ture after the phase transition from TA to TD. This

energy is proportional to the area enclosed by the

horizontal line A00D and the base line �T�0 from

temperature TA to TD, the area A0AA00DD0 shown in

Fig. 1, and can be represented by AREAbase_h. The

term � represents the in¯uence of the temperature

gradient within the sample and the change of speci®c

heat with change of temperature.

The physical meaning of Eq. (6) is very clear: The

latent heat of the sample equals the total energy

absorbed in the transition from TA to TD minus the

energy absorbed to increase the sample temperature

after the phase transition from TA to TD, plus the

correction term �.
Eq. (6) can be rewritten:

Lheating � K�AREApeak-h ÿ AREAbase-h� � �
(6A)

where K is a parameter which relates an area of DTA

with energy [1] and K is a function of heating rate and

Newton's constant of the sample holder.

Eqs. (6) and (6A) are general. They are valid irre-

spective of the relationship between the speci®c heat

and the temperature of the sample.

We next consider the cooling phase-transition

process.

As illustrated in Fig. 3, corresponding to point A

and point D, we use E1 and E2 to represent the energy

of sample particle with a unit mass, respectively, in the

low- and high-temperature states (The same as in the

heating process, where subscripts L�low-temperature

state, and H�high-temperature state).

As shown in Fig. 3, at point A a phase change

occurs. When sample holder temperature reaches TA

(TA�Ttr, Ttr is the transition temperature of the sam-

ple), only the small section of the sample in contact

Fig. 3. A typical DTA cooling (exothermic) phase change curve.
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with the holder reaches the transition temperature Ttr.

The temperature of other parts of the sample is still

higher than TA because of the temperature gradient.

For speci®c experimental conditions, assuming the

temperature of a sample particle i to be THi and the

temperature difference between the particle and

holder wall to be �THi, we have the relationship

THi�TA��THi. In this de®nition, �THi is always

positive.

At point D, the whole sample has ®nished the phase

change. The outer surface of the sample reaches

temperature TD, and the distribution of the tempera-

ture gradients within the sample has just stabilized,

causing the curve to return to the point D, the position

of the baseline of the DTA curve. If the temperature of

a sample particle i is TLi and the temperature differ-

ence between the sample and the holder is �THi, then

TLi�TD��TLi. Again, the �THi is always positive.

We also have Eqs. (1) and (2) and by a process similar

to that used earlier to derive Lheating, we obtain:

Lcooling �
X

i

mi�Ei ÿM�E1�TA� ÿ E1�TD�� ÿ �0

(8)

where

�0 �
X

i

mi�cH�TA��THi ÿ cL�TD��TLi�

� 1

2!

X
i

mi
dcH�TA�

dT
��THi�2

�
ÿ dcL�TD�

dT
��TLi�2

�
� � � � � 1

n!

X
i

mi

� dnÿ1cH�TA�
dTnÿ1

��THi�n
�

ÿ dnÿ1cL�TD�
dTnÿ1

��TLi�n
�
� � � � (9)

Eq. (8) also can be rewritten as:

Lcooling � K 0�AREApeak-c ÿ AREAbase-c� ÿ �0
(8A)

where parameter K0 is a function of both cooling rate

and Newton's constant of the sample holder, and

the AREApeak_c is the area A0AA00BCDD0 and the

AREAbase_c is the area A0A00DD0 as shown in Fig. 3.

The physical meaning of Eq. (8) or Eq. (8A) is also

very clear. The latent heat of the sample represents that

the total energy,
P

imi�Ei or K0 AREApeak_c, released

in the interval from A to D minus the energy,

M[E1(TA)ÿE1(TD)] or K0 AREApeak_c, released on

lowering the sample temperature from TA to TD,

and minus a correction term, �0, which is caused by

the temperature gradient within the sample and the

change of the speci®c heat.

Here, we must indicate that the TA in Eq. (7) is the

sample transition temperature, so it is the same as the

TA in Eq. (9) if there are no any superheating and

supercooling phenomena. However, the TD in Eq. (7)

(the temperature corresponding to point D of Fig. 1,

which is bigger than TA) differs from that in Eq. (9),

which is lower than TA.

Eqs. (8) and (8A) are also general. No matter what

relationship exists between the speci®c heat and the

temperature, Eqs. (8) and (8A) are valid.

3. Discussion

From Eqs. (6) and (8), we know that AREApeak_h,

AREAbase_h, AREApeak_c and AREAbase_c can be

drawn easily from the DTA curve, but it is very

dif®cult to estimate the value of � and �0. In a real

experiment, � and �0 are usually neglected and this

causes systematic errors. If � is small enough to be

negligible compared with L, we can use only one

heating or cooling DTA curve to obtain the exact value

of the latent heat.

From the de®nitions of � and �0, it can be concluded

that the smaller
P

imi and �Ti, the smaller will be �
and �0. Therefore within the sensitivity of the appa-

ratus, � and �0 can be minimized by decreasing the

sample mass, lowering the heating and cooling rate

and improving the heat conducting condition of the

sample.

For many organic compounds such as organic

polymer materials, their phase transitions are often

accompanied with some metastable state transitions and

they often demonstrate some unordinary phenomena

such as superheating or supercooling. Because of the

effectsof themetastablestates, the latentheatobtainedis

usually not the really pure latent heat. How to obtain the

really pure latent heat in these situations is a great

subject, and we will try to study it in the future.

If the heating rate equals the cooling rate, K in

Eq. (6A) has the same value as K0 in Eq. (8A). For a
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very special situation in which the phase transition is

reversible and there are no superheating and super-

cooling phenomena and the heating rate equals the

cooling rate, by adding Eqs. (6) and (8) and averaging,

the latent heat follows as:

L � 1
2
�Lheating �Lcooling� (10)

� K

2
��AREApeak-h ÿ AREAbase-h�

� �AREApeak-c ÿ AREAbase-c��
� 1

2
�� ÿ �0�

No matter what relationship exists between the

speci®c heat and the temperature, for a reversible

phase transition, the Eq. (10) is valid if the heating

rate equals the cooling rate.

On account of the in¯uence of the temperature

gradient within the sample and the change of speci®c

heat with temperature, � and �0 are not equal to zero

and they do not generally have the same value. When

the speci®c heat of the sample is only a slowly varying

function of the temperature, the high rank terms of �T

in both Eqs. (7) and (9) are so small that they can be

omitted, the absolute value and the sign of � and �0 are

mainly determined by those of the ®rst term of

Eqs. (7) and (9),
P

imi[cH(TD)�THiÿcL(TA)�TLi]

and
P

imi[cH(TA)�THiÿcL(TD)�TLi. For a particular

heating or cooling rate, the higher the speci®c heat of

the sample, the greater the heat energy absorbed or

released per unit time by the sample from the sur-

roundings, and the bigger the temperature gradient

within the sample according to the well-known heat

transfer principle. If cH>cL, then �TH>�TL, so

cH�THÿcL�TL>0 must be true. On the other hand,

if cH<cL, we must have cH�THÿcL�TL<0. � therefore

has the same sign as cHÿcL. If cH�cL�constant, � and

�0 are equal to zero and the conventional Gray±Speil

treatment only represents a special condition of our

theory when cH�cL�constant.

Besides an abrupt change in cp during the transition,

if the speci®c heat of the sample is a slow changing

function of the temperature at the measured tempera-

ture interval, we know that the value of � and �0 are

mainly determined by the value of
P

imi[cH(TD)

�THiÿcL(TA)�TLi] and
P

imi[cH(TA) �THiÿcL(TD)

�TLi], therefore � is approximately equal to �0. Many

real reversible transition situations satisfy this condi-

tion. And if we use Eq. (10) to calculate latent heat of

a reversible transition, the absolute error can be

reduced to (�ÿ�0)/2. Because the � and �0 have the

same sign, we have |�ÿ�0|/2�|�| and |�0|. By using

Eq. (10), we can at least reduce half of the errors

caused in the situation by only using Eq. (6) or

Eq. (8). The latent heat formula can be rewritten as:

L � K

2
��AREApeak-h ÿ AREAbase-h�

� �AREApeak-c ÿ AREAbase-c�� (10A)

and � and �0 can be estimated from following equation:

� � �0 � K

2
��AREApeak-h ÿ AREAbase-h�

ÿ �AREApeak-c ÿ AREAbase-c�� (10B)

4. General area method for latent heat in DTA

Under a certain experimental condition, it is very

dif®cult to calculate the value of the correction item �
directly for a speci®c sample. In the following we will

introduce an area method to deal with the correction

item �.
Now, we consider a second-order phase transition.

During this transition, the latent heat is zero, but the

speci®c heat has a change. For simplicity, we assume

cH>cL, where cH or cL is the function of temperature.

As shown in Fig. 4 the phase-transition curve in the

heating process is the curve AD. From this trace it is

easy to ®nd that the phase transition takes place at the

point A and when all the samples have ful®lled the

transition and have reached a stable state the curve

reaches the point D. From Eq. (6A):

Lheating � K�AREA�ADD0A0A�
ÿAREA�A00DD0A0AA00�� � �
ÿ K�AREA�A00DAA00�� � � (11)

From Lheating�0, we can obtain ��K[AREA

(A00DAA00)] in which the � is associated with the area

in the DTA.

Now, let us consider a transition in which the value

of the latent heat is non-zero and the relation cH>cL is

still valid. The phase-transition curve is shown in

Fig. 5. The curve AD is determined as follows: divid-

ing the real phase-transition process into two different

processes. One process represents phase transition and

the other represents the temperature variation of all
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sample particles. Linking the heat that is provided to

enhance the temperature of the sample per unit time

with the equivalent temperature difference between

the environment and the outer surface of the sample,

we have a relation: K�Teff�dQs/dt. From this relation

we can draw the curve AD, which is called equivalent

non-latent heat baseline. According to Eq. (6A):

Lheating � K�AREA�ABCDD0A0A�
ÿAREA�A00DD0AA00�� � � (12)

Using the relation ��AREA(A00DAA00), we ®nally get:

Lheating � K�AREA�ABCDD0A0A�
ÿAREA�A00DD0AA00�
�AREA�A00DAA00��
� K�AREA�ABCDA��
� K�area enclosed by peak and its

equivalent non-latent heat baseline�
(13)

The AREA(ABCDA) is the gray area of Fig. 5.

If we can draw the equivalent non-latent heat base-

line from the pretransition baseline and post-transition

baseline, it becomes very easy for us to calculate the

latent heat from the area enclosed by peak and the

equivalent non-latent heat baseline.

In a real process, under a certain experimental

condition, if the latent heat is zero, the temperature

span between the beginning and the end of the transi-

tion peak is (TDÿTA)L�0. Under the same condition, if

the latent heat is not zero, the temperature span

between the beginning and the end of the transition

peak (TDÿTA)L 6�0 is generally not equal to

(TDÿTA)L�0. The reason is that the thermal conduc-

tivity of the sample is virtually ®nite. During the

transition only some parts of the heat which is trans-

ferring within the sample is provided to enhance the

temperature of the sample. No matter what kind of the

transition (exothermic or endothermic) takes place,

the temperature span (TDÿTA)L 6�0 must differ from

that of (TDÿTA)L�0. Under a normal condition, the

thermal conductivity of the sample can be represented

as �. When we deal with the true phase-transition

process in which the latent heat is not zero, the

equivalent non-latent heat baseline can be regarded

as a non-latent heat-transition curve of the sample with

the equivalent thermal conductivity �0. As discussed

above, in the general situations the � is not equal to �0.
If the equivalent thermal conductivity �0 can be cal-

culated, by using the above method, the equivalent

non-latent heat baseline can be determined correctly,

and the latent heat can also be obtained exactly.

Actually, it is impossible for us to obtain the equiva-

lent thermal conductivity �0 of a real example, so it is

almost impossible to obtain the exact value of latent

heat with this area method. In some special conditions,

such as the sample with high thermal conductivity or

other approximate situations, the equivalent non-latent

heat baseline can be replaced by the true non-latent

heat-transition curve.

Wunderlich [1] has advanced an approximate

method to deal with latent heat value in DTA in the

situation that the heat capacity is a function of tem-

perature, in which the main idea is much like that of

the equivalent non-latent heat baseline here.

In the cooling phase-transition process, the latent

heat formula can also be represented by Eq. (13)

which is similar to the heating phase-transition pro-

cess. The method of determining the equivalent non-

Fig. 4. A typical second class transition of DTA in the heating

process.

Fig. 5. A typical (exothermic) transition curve of DTA in the

heating process.
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latent heat baseline is the same as that in the heating

transition process.

The above discussion of area method reveals that

the temperature gradients within the sample can not

omitted simply. In the general situations, to obtain the

exact value of latent heat of sample, the effects of

temperature gradients must be considered.

5. Conclusion

In this paper, a more rigorous general expression for

latent heat is derived by considering temperature

gradients within the sample and the physically realis-

tic situation in which the speci®c heat of the sample

changes during the transition and is also a function of

the temperature in both the low- and high-temperature

states.

Because of the temperature gradient within the

sample, if the speci®c heat of sample has an abrupt

change at the transition, using only the heating or

cooling DTA curve to calculate latent heat of the

sample will result in some errors. Irrespective of the

relationship between speci®c heat and temperature

the error can be minimized, within the sensitivity of

the apparatus, by decreasing the amount of the sample,

lowering the heating and cooling rate and improving

the heat conducting condition of the sample. If the

speci®c heat of the sample is a slowly changing

function of temperature, the error caused by tempera-

ture gradients within the sample can also be mini-

mized for a reversible transition, by using the area

method in DTA and averaging the latent heats

obtained from both the heating and cooling processe-

s.In the general situation, the errors caused by the real

temperature gradients within the sample can not be

neglected. In the DTA area method, this correction

item � equals the area enclosed by extrapolated post-

transition baseline and the equivalent non-latent heat

baseline between initial point of transition and the ®rst

point of the stable postbaseline, and the latent heat is

proportional to the area enclosed by peak curve and

the equivalent non-latent heat baseline.
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